Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38140215

RESUMO

Group B Streptococcus (Streptococcus agalactiae or GBS) is the leading infectious cause of neonatal mortality, causing roughly 150,000 infant deaths and stillbirths annually across the globe. Approximately 20% of pregnant women are asymptomatically colonized by GBS, which is a major risk factor for severe fetal and neonatal infections as well as preterm birth, low birth weight, and neurodevelopmental abnormalities. Current clinical interventions for GBS infection are limited to antibiotics, and no vaccine is available. We previously described VAX-A1 as a highly effective conjugate vaccine against group A Streptococcus that is formulated with three antigens, SpyAD, streptolysin O, and C5a peptidase (ScpA). ScpA is a surface-expressed, well-characterized GAS virulence factor that shares nearly identical sequences with the lesser studied GBS homolog ScpB. Here, we show that GBS C5a peptidase ScpB cleaves human complement factor C5a and contributes to disease severity in the murine models of pneumonia and sepsis. Furthermore, antibodies elicited by GAS C5a peptidase bind to GBS in an ScpB-dependent manner, and VAX-A1 immunization protects mice against lethal GBS heterologous challenge. These findings support the contribution of ScpB to GBS virulence and underscore the importance of choosing vaccine antigens; a universal GAS vaccine such as VAX-A1 whose formulation includes GAS C5a peptidase may have additional benefits through some measure of cross-protection against GBS infections.

2.
mSphere ; 8(3): e0001923, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37017547

RESUMO

Shigella is responsible for high burdens of diarrhea and dysentery globally. Children living in areas of endemicity are the most affected, and currently, there are no licensed vaccines to prevent shigellosis. Vaccine approaches have traditionally targeted the bacterial lipopolysaccharide as a protective antigen. Shigella O-polysaccharide (OPS) conjugated to recombinant Pseudomonas aeruginosa exotoxin A (rEPA) or tetanus toxoid (TT) is advanced in clinical evaluation. Adequate efficacy of these vaccines, particularly in the infant target group, remains to be demonstrated. A major limitation of the OPS-glycoconjugate concept is its limited coverage, since immunity to the O antigen is serotype specific, and there are multiple disease-causing serotypes. Another concern is the use of protein carriers already included in multiple other childhood vaccines. This study reports a novel Shigella OPS conjugate vaccine that uses the Shigella invasion plasmid antigen B (IpaB) as the carrier protein. IpaB is a virulence factor component of the Shigella type III secretion system and highly conserved among Shigella serotypes. It is robustly immunogenic and a protective antigen. IpaB and IpaB containing nonnative amino acids (nnAA) were produced at large scale using cell-free protein synthesis. Incorporation of nnAA enabled site-specific conjugation of IpaB to Shigella flexneri 2a OPS using click chemistry, yielding OPS-IpaB glycoconjugate. Parenteral immunization of mice with the OPS-IpaB vaccine resulted in high levels of OPS- and IpaB-specific serum IgG and robust protection against lethal S. flexneri 2a or Shigella sonnei challenge. The OPS-IpaB vaccine is a promising new vaccine candidate with the capacity to confer broad protection against clinically relevant Shigella serotypes. IMPORTANCE Diarrhea caused by Shigella species results in long-term disability and mortality globally, disproportionally affecting younger children living in poor countries. Although it is treatable by antibiotics, the rapid and widespread emergence of resistant strains and the highly contagious nature of the disease compel the development of preventive tools. Currently, several Shigella OPS conjugate vaccines are being evaluated in clinical studies, but these rely exclusively on immunity against the bacterial O antigen, which limits their coverage to only the immunizing serotype; multivalent vaccines are needed to protect against the most prevalent serotypes. This is the first report of a novel Shigella OPS-conjugate vaccine that uses Shigella IpaB as a carrier and protective antigen. This vaccine, administered parenterally, elicited robust immunity and protected mice against lethal infection by S. flexneri 2a or S. sonnei. The OPS-IpaB vaccine is a promising candidate for evaluation in vulnerable populations.


Assuntos
Vacinas contra Shigella , Shigella , Animais , Camundongos , Vacinas Conjugadas , Sorogrupo , Formação de Anticorpos , Lipopolissacarídeos , Antígenos O , Exotoxina A de Pseudomonas aeruginosa
3.
ACS Omega ; 7(39): 34921-34928, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211053

RESUMO

Strain-promoted azide-alkyne cycloaddition (SPAAC) reactions like click chemistry have the potential to be highly scalable, robust, and cost-effective methods for generating small- and large-molecule conjugates for a variety of applications. However, despite method improvements, the rates of copper-based click chemistry reactions continue to be much faster than the rates of copper-free click chemistry reactions, which makes broader deployment of click chemistry challenging from a safety and compatibility standpoint. In this study, we used a zwitterionic detergent, namely, lauryldimethylamine N-oxide (LDAO), in a copper-free click chemistry reaction to investigate its impact on the generation of conjugate vaccines (CVs). For this, we utilized an Xpress cell-free protein synthesis (CFPS) platform to generate a proprietary variant of CRM197 (eCRM) containing non-native amino acids (nnAA) with azide-containing side chains as a carrier protein for conjugation to several clinically relevant dibenzocyclooctyne (DBCO)-derivatized S. pneumoniae serotypes (types 3, 5, 18C, and 19A). For conjugation, we performed copper-free click chemistry in the presence and absence of LDAO. Our results show that the addition of LDAO significantly enhanced the reaction kinetics to generate larger conjugates, which were similarly immunogenic and equally stable to conjugates generated without LDAO. Most importantly, the addition of LDAO substantially improved the efficiency of the conjugation process. Thus, our results for the first time show that the addition of a zwitterionic surfactant to a copper-free click chemistry reaction can significantly accelerate the reaction kinetics along with improving the efficiency of the conjugation process.

4.
ACS Omega ; 7(28): 24111-24120, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874267

RESUMO

Surface-expressed bacterial polysaccharides are important vaccine antigens but must be conjugated to a carrier protein for efficient antigen presentation and development of strong memory B cell and antibody responses, especially in young children. The commonly used protein carriers include tetanus toxoid (TT), diphtheria toxoid (DT), and its derivative CRM197, but carrier-induced epitopic suppression and bystander interference may limit the expanded use of the same carriers in the pediatric immunization schedule. Recent efforts to develop a vaccine against the major human pathogen group A Streptococcus (GAS) have sought to combine two promising vaccine antigens-the universally conserved group A cell wall carbohydrate (GAC) with the secreted toxin antigen streptolysin O (SLO) as a protein carrier; however, standard reductive amination procedures appeared to destroy function epitopes of the protein, markedly diminishing functional antibody responses. Here, we couple a cell-free protein synthesis (CFPS) platform, allowing the incorporation of non-natural amino acids into a C-terminally truncated SLO toxoid for the precise conjugation to the polyrhamnose backbone of GAC. The combined immunogen generated functional antibodies against both conserved GAS virulence factors and provided protection against systemic GAS challenges. CFPS may represent a scalable method for generating pathogen-specific carrier proteins for multivalent subunit vaccine development.

5.
Arch Biochem Biophys ; 727: 109317, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35709965

RESUMO

Human 15-lipoxygenases (LOX) are critical enzymes in the inflammatory process, producing various pro-resolution molecules, such as lipoxins and resolvins, but the exact role each of the two 15-LOXs in these biosynthetic pathways remains elusive. Previously, it was observed that h15-LOX-1 reacted with 5S-HETE in a non-canonical manner, producing primarily the 5S,12S-diHETE product. To determine the active site constraints of h15-LOX-1 in achieving this reactivity, amino acids involved in the fatty acid binding were investigated. It was observed that R402L did not have a large effect on 5S-HETE catalysis, but F414 appeared to π-π stack with 5S-HETE, as seen with AA binding, indicating an aromatic interaction between a double bond of 5S-HETE and F414. Decreasing the size of F352 and I417 shifted oxygenation of 5S-HETE to C12, while increasing the size of these residues reversed the positional specificity of 5S-HETE to C15. Mutants at these locations demonstrated a similar effect with 7S-HDHA as the substrate, indicating that the depth of the active site regulates product specificity for both substrates. Together, these data indicate that of the three regions proposed to control positional specificity, π-π stacking and active site cavity depth are the primary determinants of positional specificity with 5S-HETE and h15-LOX-1. Finally, the altered reactivity of h15-LOX-1 was also observed with 5S-HEPE, producing 5S,12S-diHEPE instead of 5S,15S-diHEPE (aka resolvin E4 (RvE4). However, h15-LOX-2 efficiently produces 5S,15S-diHEPE from 5S-HEPE. This result is important with respect to the biosynthesis of the RvE4 since it obscures which LOX isozyme is involved in its biosynthesis. Future work detailing the expression levels of the lipoxygenase isoforms in immune cells and selective inhibition during the inflammatory response will be required for a comprehensive understanding of RvE4 biosynthesis.


Assuntos
Araquidonato 15-Lipoxigenase , Ácidos Docosa-Hexaenoicos , Lipoxigenase , Humanos , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos , Ácidos Hidroxieicosatetraenoicos/química , Lipoxigenase/genética , Receptores Depuradores Classe E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...